

Tipos de Poços para Captação

Cisterna, Caipira, Cacimba ou Amazonas - Poços Escavados

Poços de grandes diâmetros (0,90 metro ou mais), escavados manualmente e revestidos com tijolos ou anéis de concreto. Captam a água subsuperficial do lençol freático e possuem geralmente profundidades na ordem de até 20 metros.

Tipos de Poços para Captação

Poço Tubular

Obra de engenharia geológica de acesso a água subterrânea, executada com sonda perfuratriz mediante perfuração vertical com diâmetro de 4" a 36" e profundidade de até 2 mil metros, para captação de água.

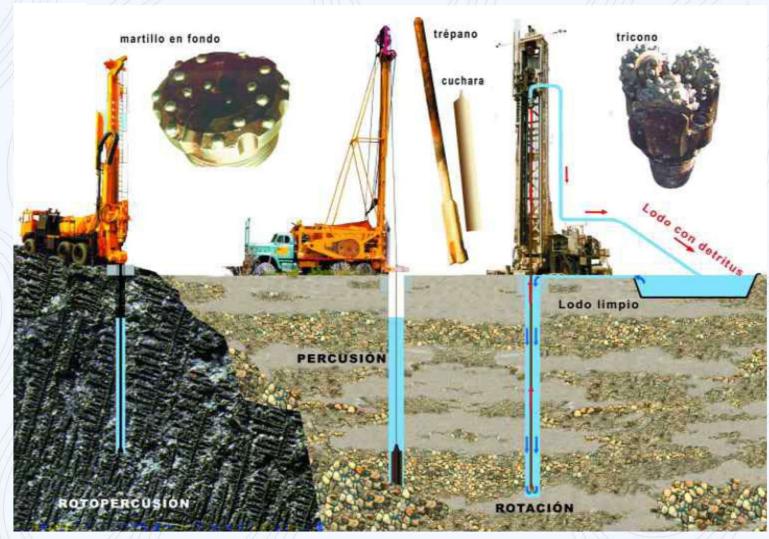
Etapas da Construção de um Poço Tubular

Etapa Prévia:

- Projeto do poço NBR12.212 - Projeto de poço tubular

Etapas Construtivas: NBR12.244 - Construção de poço tubular

- Perfuração Percussivo, Rotativo ou Rotopneumático.
- Completação Colocação do revestimento, filtro, pré-filtro, cimentação e laje de proteção.
- Limpeza retirar toda a lama/fluído e resíduos de perfuração.
- Desenvolvimento tem o objetivo de aumentar a condutividade hidráulica natural nas proximidades do poço, através da retirada seletiva de finos, e corrigir dados causados ao aquífero devido a perfuração (compactação, colmatação etc.).


Etapas Posteriores:

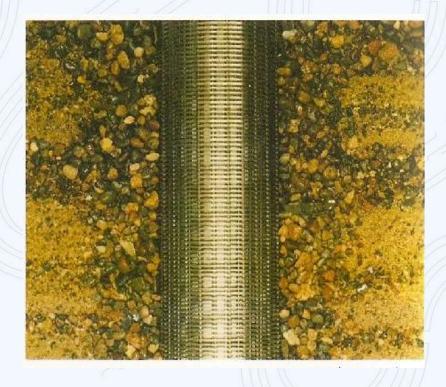
- Teste de vazão
- Desinfecção

Métodos de Perfuração

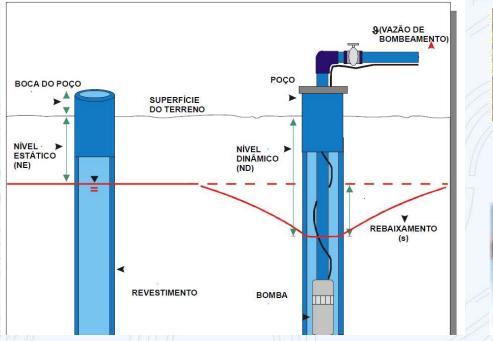
Projeto e Construção de Poços

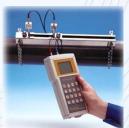
Completação

Um poço é composto de vários componentes. Os mais importantes são:


- Revestimento tubos para sustentação as paredes do poço.
- •Filtro tubos ranhurados para a passagem de água.
- **Pré-Filtro** preenchimento de cascalho/areia entre o revestimento/filtro e a parede do poço. Finalidade de estabilizar entrada de sedimentos finos.
- •Cimentação colocação de pasta de cimento entre o revestimento e a parede do poço, na porção superior. Finalidade de evitar entrada de águas poluídas no poço.
- Laje de Proteção Sanitária Concluídos todos os serviços no poço, deve ser construída uma laje de concreto, fundida no local, envolvendo o tubo de revestimento.

Limpeza e Desenvolvimento


- Limpeza tem o objetivo de retirar toda a lama e resíduos de perfuração de dentro do poço. Métodos: Injeção de Água Limpa, Jateamento, Remoção Mecânica de Crostas de Lama ("caçambeamento").
- Desenvolvimento tem o objetivo de aumentar a condutividade hidráulica natural nas proximidades do poço, através da retirada seletiva de finos, e corrigir danos causados ao aquífero devido a perfuração (compactação, colmatação etc.). Métodos: Superbombeamento, Bombeamento com ar comprimido, Reversão de Fluxo, Pistoneamento (Surge Plunger), Pistoneamento Casado (Air Surge Plunger).



- Consiste na medida do nível do poço ao longo do tempo para uma determinada vazão.
 Variáveis envolvidas: Vazão (Q), rebaixamento (s) e tempo (t).
- Duas fases previstas: Rebaixamento e Recuperação.

EXECUTOR:

Registro dos Dados (Teste de Aquífero ou Produção)

 $Q(m^3/h)$: РОСО ВОМВ.: PROF.:

POÇO OBSERV: AQUÍFERO: R (m):

MUNIC./EST.:

TEMPO BOMB.: **NE** (m): ND (m):

INÍCIO: **TÉRMINO:** CRIVO BOMBA (m):

REBAIXAMENTO						RECUPERAÇÃO			
HORA	t (min)	ND (m)	s _w (m)	Q (m ³ /h)	Q/s _w (m ³ /h/m)	t' (min)	ND (m)	s _w (m)	tb/t' + 1

Frequência de medição:

LOCAL:

0-10 1 min

10-20 2 min

20-50 5 min

50-100 10 min

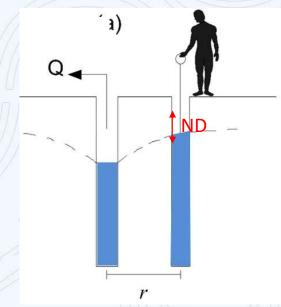
100-500 30 min

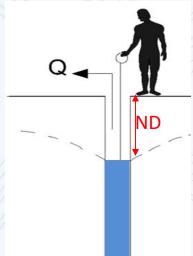
500-1000 60 min

>1000 100 min

Teste de Recuperação

Efetuado ao término do teste de produção. Consiste na medida do nível em função do tempo até que o nível atinja o nível estático original.

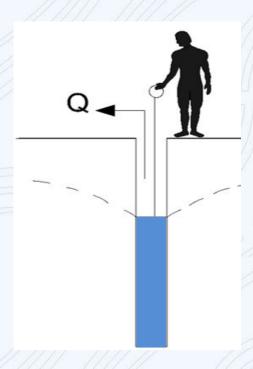

Teste de Bombeamento Teste de Produção x Teste de Aquífero


Teste de Produção

- Determinação da vazão de explotação e a profundidade da bomba.
- Registro do rebaixamento no próprio poço.

Teste de Aquífero

- Caracterizar o aquífero (K, T, S).
- Registro do rebaixamento em poço de observação.



Teste de Produção

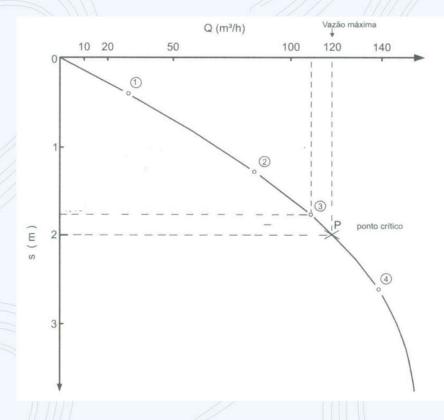
- Bombeamento e registro dos rebaixamentos no próprio poço bombeado.
- Definir a vazão de operação do poço e a profundidade da bomba.
- Determinação das perdas de carga no poço (equação característica do poço s = BQ + CQ²) e a avaliação da eficiência do poço.
- Pode ser realizado em etapa única (contínuo) ou em múltiplas etapas (escalonado ou sucessivo).
- Tempo de bombeamento usual é de 24 a 48 hs para etapa única e normalmente de 2 a 6 horas para cada etapa do escalonado ou sucessivo.

É o tipo de teste executado na grande maioria dos poços perfurados para produção de água. É esse o tipo de teste usualmente solicitado pelos órgãos gestores de recursos hídricos.

Teste de Produção em Múltiplas Etapas

- No mínimo 3 etapas, onde a vazão em cada etapa deve ser constante e Q1 < Q2 < Q3
 < Q4...
- A maior vazão deve ser igual ou superior àquela cogitada para explotação.
- Duração do teste: normalmente 2 a 6 horas cada etapa.
- Permite a construção da equação característica do poço s = BQ + CQ² e a avaliação da eficiência do poço.
- Pode ser em etapas escalonadas (sem recuperação do nível estático ao término de cada etapa) ou sucessivas (com recuperação do nível estático).
- Podem ser realizados com ou sem estabilização final do ND.

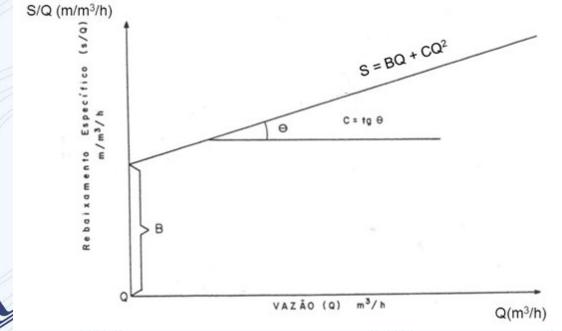
Teste de Produção em Múltiplas Etapas



Interpretação de Testes de Produção

Determinação da Vazão de Explotação de Poços Tubulares

Vazão de explotação é aquela determinada para a produção do poço considerando um alcance determinado (5, 10, 15, 20 ... anos). É calculada considerando tanto a produtividade do aquífero captado, como as características construtivas do poço, além de fatores influentes externos (interferências de outros poços etc.).



Determinação das Perdas de Carga

Representa as perdas do aquífero

 $s = BQ + CQ^2$ \Longrightarrow Equação característica do poço

Representa as perdas do poço

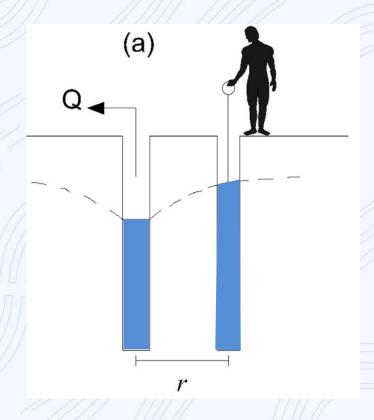
Interpretação de Testes de Produção Determinação da Eficiência do Poço

e = BQ / (BQ + CQ²)

s = rebaixamento em metros;

B = coeficiente de perdas laminares;

C = coeficiente de perdas turbulentas;


Q = vazão em m³/h.

Teste de Aquífero

- bombeamento do poço e registro dos rebaixamentos em poço(s) de observação localizado a uma distância r.
- Maior tempo de bombeamento 24 a 72 hs (cada etapa).
- Caracterização do aquífero K, T, S.
- Diferentes métodos de interpretação a depender do tipo de aquífero e do regime de fluxo.

Métodos de Interpretação de Testes de Aquífero

Teste de Aquífero

Análise de fluxo para poços em meios homogêneos

Regime de Fluxo	Tipo de aquífero					
	Confinado não drenante¹	Confinado drenante²	Livre			
Estacionário ³	Thiem	De Glee Hantush-Jacob	Dupuit & Forchheimer			
Transiente ⁴	Theis Jacob	Walton Hantush	Hantush-Jacob Boultoun-Pricket			

- 1 Confinado drenante pelo menos uma das camadas limítrofes é semipermeável (K>0).
- 2 Não drenante as camadas limítrofes são impermeáveis (K=0).
- 3 Regime Estacionário ou Permanente O cone de rebaixamento é estabilizado devido a contribuição de água de uma fonte externa.
- 4 Regime Transiente O cone de rebaixamento evolui progressivamente com o tempo.

