Modelo de previsão de cheias e determinação de áreas alagáveis na bacia hidrográfica do rio Poxim, no estado de Sergipe

Novembro/2018 – Aracaju - SE

Erick Valério

Assistente de Pesquisa III

1 Contextualização

Observações/Previsões

cheias e alerta

Sistema de Previsão

Dados de entrada Modelo hidráulico V22008 Modelo hidrológico Previsão de Dados hidrológicos

1 Contextualização

Unidade de Planejamento do Poxim

Ações otimizadas e integradas

1 Contextualização

- Dificuldades na UP Poxim:
 - Tamanho da bacia;
 - Falta de dados observados.

Boa funcionalidade = Monitoramento adequado (estações telemétricas e radar).

Coleta de dados

SEMARH

- Dados hidrológicos, batimetria e shapes de uso e tipos de solo;
- •Imagens de satélite e curvas de nível de 5 metros;
- Projeto executivo da barragem Jaime Umbelino e relatórios de outorga;
- •Estudos realizados na bacia pela UFS.

Dados online

- •ANA (hidroweb e gestor de PCDs);
- •INMET (BDMEP), INPE (SINDA e Normais climatológicas) e Xavier et al. 2016;
- •CEMADEN e SEDEC (S2ID);
- Outros estudos.

Reuniões e visitas

- •DESO;
- Defesa civil municipal;
- •UFS;

Saída de campo

- •14 de setembro de 2018;
- •Percorridos cerca de 140 km;
- •Cabeceira do rio Poxim-Açú, barragem Jaime Umbelino e a diversos pontos de interesse na cidade de Aracaju

Análise de dados

Dados hidrológicos

- Extensão e continuidade das séries;
- Construção de inventário de estações;
- Diagrama de Gantt.

Criação do banco de dados

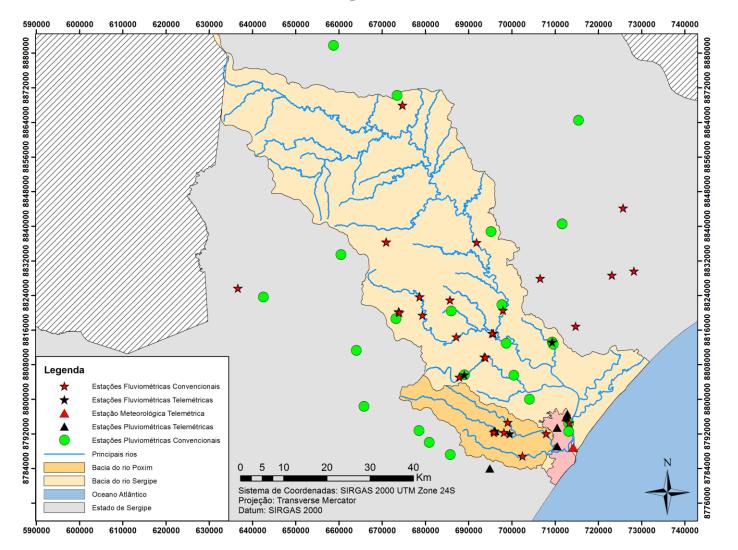
- HEC-DSS;
- Consistência dos dados pelo HEC-DSSVue e Pré-Plu MGB.

Análise do MDE

- ArcHydro/HEC-GeoHMS;
- IDRISI;
- SWAT (Stream Burn);
- MGB-IPH.

Modelagem hidrológica

Preparação dos dados de entrada:


- HEC DSS: Base de dados.
- HEC-GeoHMS: Pré-processamento e a preparação dos dados geo-espaciais.
- GageInterp: Séries temporais de precipitação, temperatura e evapotranspiração em formato grid.

HEC-HMS:

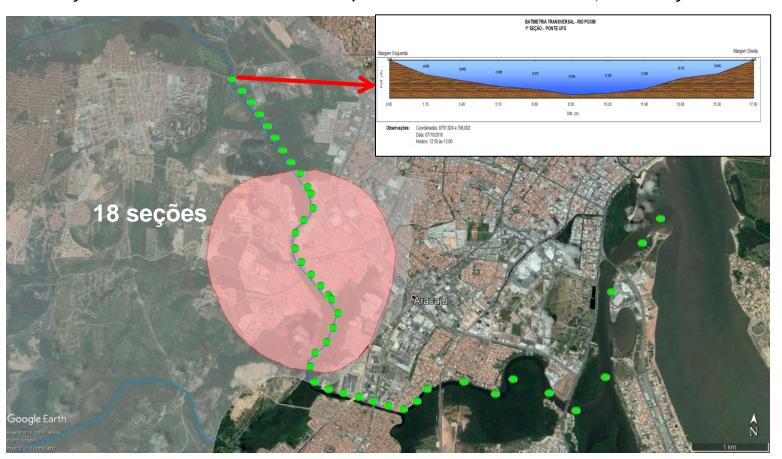
- Criação do projeto Poxim:
- Escolha dos métodos utilizados (geração do escoamento, propagação de vazão, etc.).
- Primeira simulação!

Dados Hidrológicos, hidráulicos e climáticos

33 est. pluviométricas e 38 est. fluviométricas

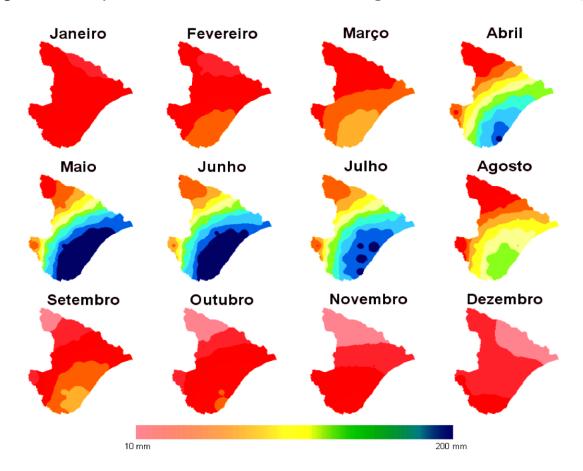
10 telemétricas (4 de chuva, 1 climática e 5 chuva e nível)

Dados Hidrológicos, hidráulicos e climáticos


- Diagram de Gantt para verificar disponibilidade

Ano Estações	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979	1980
1037002				365	366	365	365	365	366	365	365	365	366	334	365	273	304	31			
1037003	366	365	243	365	366	334	365	334		365	365	334	335	365	304	365	366	365	303	244	366
1037004		365	365	335	364	365	353	365	366	365	365			365	365	365	366	365	365	365	366
1037006	366	365	365	365	366	365	365	365	366	365	365	365	366	275	335	365	274				
1037007	366	365	334	334	335	365	242	334	366	365			31	365	365	365	366	365	365	365	366
1037008	366	357	354	365	366	365	365	365	366	365	365	365	366	365	365	365	366	337	365	365	366
1037014	366	273		334	366	365	365	365	366	365	365	365	335	304	365	365	366	273	365	365	366
1037019				365	366	365	365	335	366	365	365	365	366	304	365	365	366	365	365	365	366
1037022	366	365	365	365	366	365	365	365	366	365	365	365	366	304	365	365	183	62			
1037024				365	366	365	365	334	366	365	365	365	366	365	365	365	366	365	365	244	92
1037028				334	366	365	365	365	366	365	365	365	335	365	334	365	336	365	365	90	
1037030	366	334		365	366	365	365	365	366	365	365	365	366	303	365	365	366	365	365	365	366
1037034	366	365	365	334	366	365	365	365	366	365	365	365	366	334	365	365	335	365	365	365	366
1037036				334	366	365	334	365	366	365	365	365	366	334	306	365	366	334	365	365	366
1037042	366	365	365	365	366	365	365	365	366	365	365	365	366	212	365	365	366	365	365	365	366
1037049	366	365	365					365	366	365	365	365	366	365	365	365	366	365	365	365	366
1037058																					
1037060	366	365	365	365	366	365	365	365	366												
1037073						365	365	365	365	362	365	365	31								
1037078																					
1137007				303	366	337	365	365	366	365	365	365	366	334	365	365	366	334	365	365	366

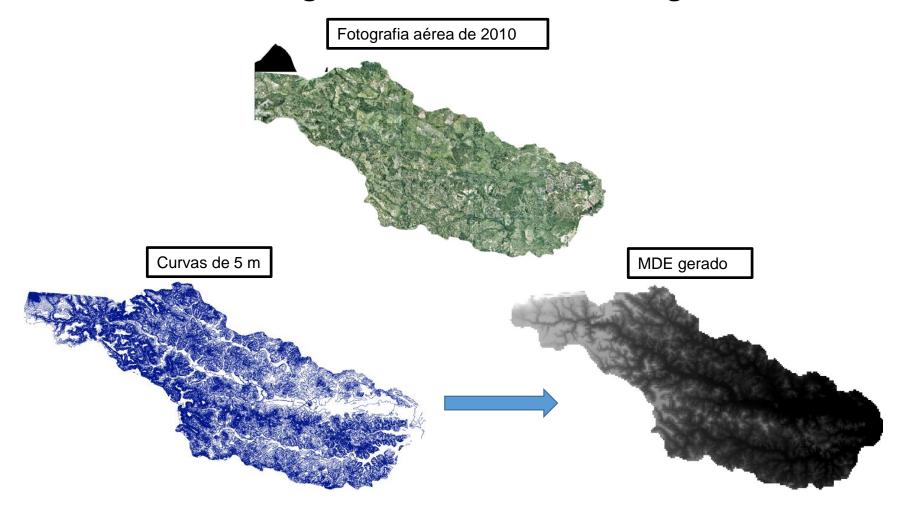
Dados Hidrológicos, hidráulicos e climáticos


- Seções transversais levantadas pela DESO/SEMARH 📄 44 seções

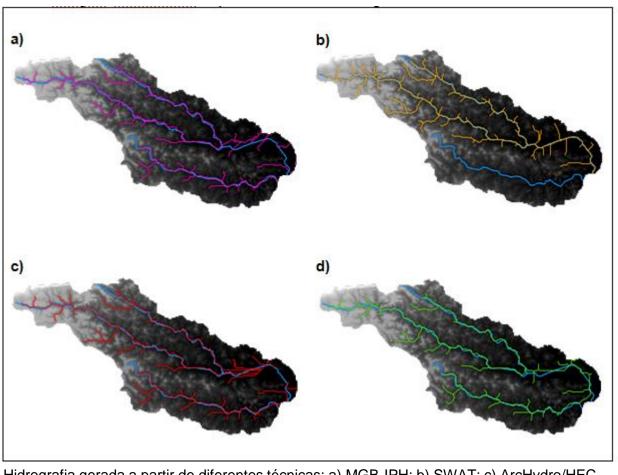
Dados Hidrológicos, hidráulicos e climáticos

- Grids gerados a partir dos índices meteorológicos de Xavier et al. (2016)

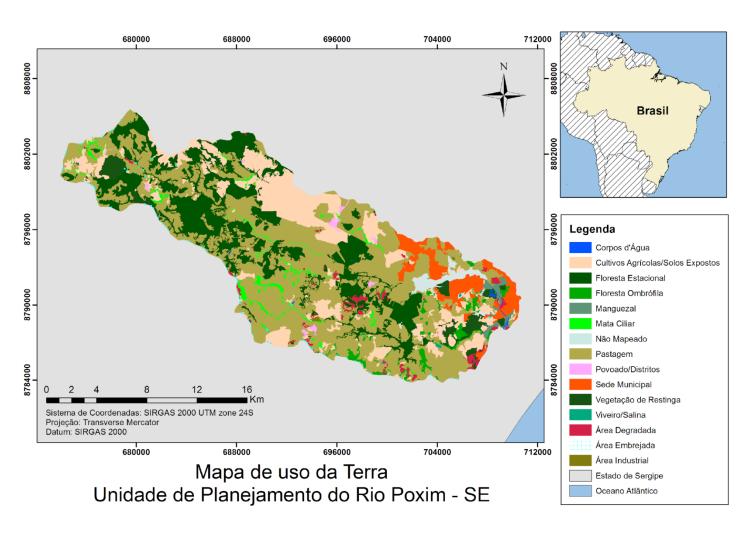
Rotina de operação do reservatório no rio Poxim-Açú


- Reunião com a DESO ⇒ controle pelo abastecimento

Estado de Escassez Hídrica:	EL. < 20,01m
Estado de Déficit Hídrico:	EL. 20,01 - 25,00m
Estado Normal:	EL. 25,01 - 30,00m
Estado de Atenção para Inundação:	EL. 30,01 - 31,00m
Estado de Alerta para Inundação:	EL. 31,01 - 32,85m
Estado de Emergência:	EL. 32,86 - 34,00m
-	



Levantamento de fotografias aéreas e Modelos Digitais do Terreno


Levantamento de fotografias aéreas e Modelos Digitais do Terreno

Hidrografia gerada a partir de diferentes técnicas: a) MGB-IPH; b) SWAT; c) ArcHydro/HEC-GeoHMS; d) IDRISI. Em azul a hidrografia delimitada manualmente

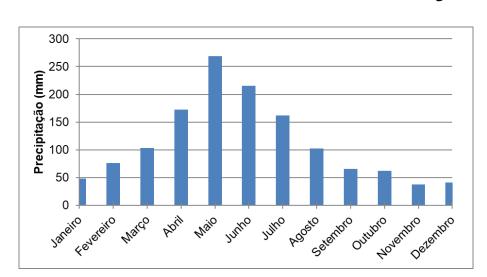
Mapa de Uso do solo

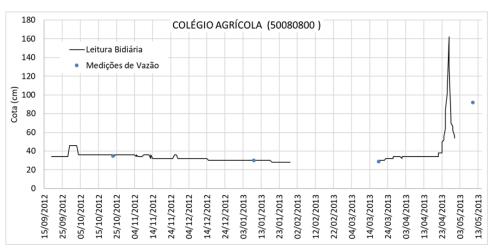
Levantamento dos eventos críticos de inundação

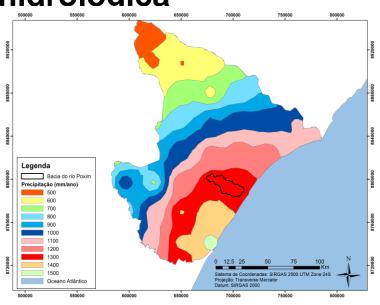
S2ID

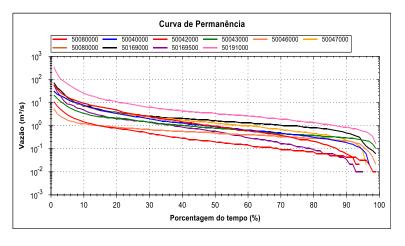
Documento	Ano	Município
Decreto	1986	Aracaju
Decreto	1987	Aracaju e São Cristóvão
Decreto	1989	Aracaju, Barra dos Coqueiros, São Cristóvão, Laranjeiras, Maruim, Divina Pastora, Itaporanga D'Ajuda, Telha e Simão Dias
Decreto	1993	Aracaju
Decreto	1997	Aracaju
Avadan	2010	Aracaju
Avadan	2010	Nossa Senhora do Socorro
Fide	2013	Aracaju

Jabotiana Viva

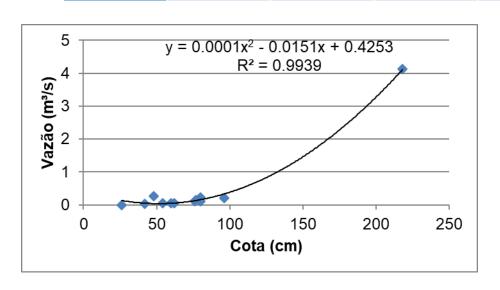


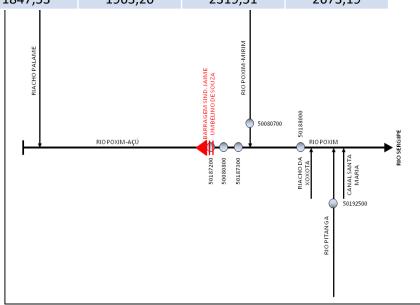

Defesa Civil Municipal



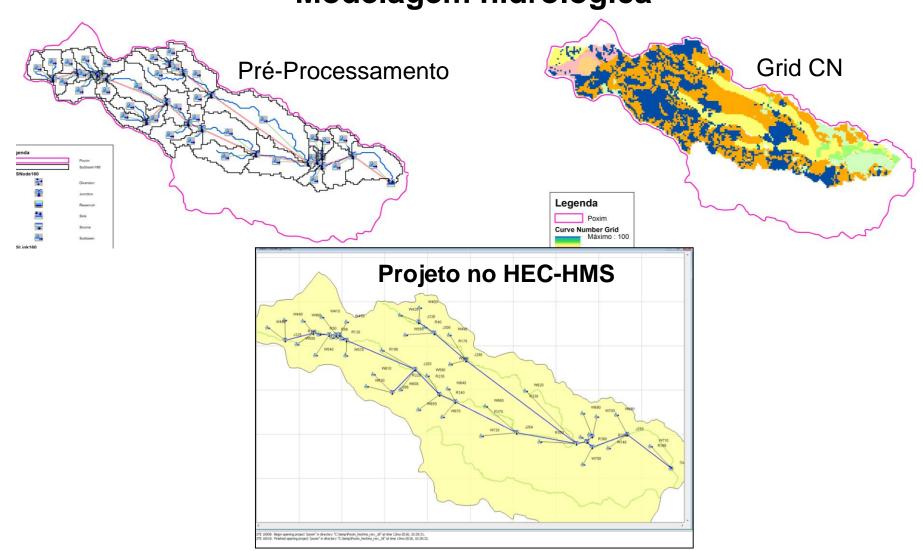


Caracterização hidrológica





Caracterização hidrológica


Estação	TR 2	TR 5	TR 10	TR 20	TR 25	TR 50	TR 100
50040000	30,38	53,22	68,34	82,85	87,45	101,62	115,69
50042000	17,21	28,63	36,20	43,45	45,75	52,84	59,88
50043000	23,42	32,40	38,35	44,06	45,87	51,45	56,99
50046000	9,27	15,37	19,40	23,27	24,50	28,28	32,04
50047000	51,24	158,54	229,58	297,72	319,34	385,92	452,02
50080000	67,91	104,27	128,34	151,43	158,76	181,32	203,72
50080700	0,08	0,27	0,90	2,30	3,07	4,97	5,79
50080800	0,78	1,02	1,85	2,69	3,28	4,00	5,07
50169000	78,51	154,10	204,15	252,16	267,39	314,30	360,87
50169500	71,52	153,37	207,56	259,54	276,03	326,82	377,24
50191000	528,62	1107,7	1482,90	1847,53	1963,20	2319,51	2673,19



Modelagem hidrológica

4 Considerações

Como fazer uma boa gestão de recursos hídricos, buscado atender múltiplos interesses, se não se consegue realizar o monitoramento adequado dos mananciais?

4 Considerações

Modelos representativos → dados consistentes e calibração adequada.

A utilidade das ferramentas que estão sendo desenvolvidas irá depender muito do aperfeiçoamento da rede de monitoramento na bacia.

Fim

Novembro/2018 - Aracaju - SE

Erick Valério

Assistente de Pesquisa III